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Gravitational	Force	and	Measuring	Gravity



Where the Universal Gravity Constant:					
G	=	6.674×10−11 m3⋅kg−1⋅s−2

Acceleration	due	to	gravity	measured	on	the	Earth:

g = GME/rE2 ,	where	ME is	that	mass	of	the	Earth	and	rE2 is	the	distance	from	the	center	of	the	Earth

On	average	this	is	~	9.81	m/s2 (or	981	Gals).	But	we	know	that	the	gravitational	
acceleration	varies	from	place	to	place	on	the	earth.

Gravitational Force

Gravitational attractive force between two 
masses, m1 and m2 at a distance r from one 
another:



Micro-g-LaCoste free	
fall	absolute	gravime-
ter.	These	devices	are	
becoming	sufficiently	
stable	and	portable	to	
be	used	in	the	field.

Example	pendulum	
absolute	gravity	
meters.



Relative	Gravimeters

Principle operation of a stable gravimeter

These devices are less sensitive than the unstable
types.  Typical examples of manufacturers are

Askania,	Boliden,	Gulf

Principle operation of an unstable gravimeter

This is the type of gravimeter in use for most gravity 
surveying these days. Typical makers are

Thyssen,	LaCoste-Romberg,	Worden



Gravity	surveys	seek	to	determine	variations	in	the	density	of	
the	subsurface.

In	gravity	surveys	we	measure	g,	the	acceleration	
due	to	gravity.		g	 varies	with	elevation,	latitude,	
topography,	tides,	and	near-surface	density.	We	
make	a	number	of	corrections	to	our	observations	
to	produce	a	map	of	gravity	anomalies	focusing	on	
local	variations	in	near-surface	density

Salt	domes,	sedimentary	basins,	
mine	shafts,	caves,	molten	rock,	marshmallows
=	gravity	low

Metalic ore	bodies,	geologic	anticlines,	dense	rocks	
=	gravity	high



Conducting	a	Gravity	Survey

Gravity	anomalies	are	very	small	in	amplitude	
compared	to	the	main	field

Gravity	is	usually	measured	in	mgal or	gu (gravity	unit)
1mgal	=	1	x	10-5 ms-2
1	gu =		1	x	10-6 ms-2

Accurate	gravity	surveying	is	a	slow	process,	but	it	is	not	
difficult.

- Level	gravimeter	carefully
- Measure	height	accurately
- About	20	mins	per	reading
- Return	to	base	every	1-2	hours

Station spacing and size of the survey area depends on
the estimated size of the anomalous body whose
gravity signature you wish to characterize. There may
be hundreds of stations in a small area if you are
looking or small features.



Required	Corrections	to	Gravity	Measurements



Measuring the gravity does not give us the whole story.

Measurements in the field are influenced by many external 
factors, masking the view of the real target until the effect of 
each factor is removed from our readings:

(a) Instrumental drift 
(b) Tide
(c) Latitude
(d) Free Air 
(e) Bouguer
(f) Terrain
(g) Isostatic 

These are the corrections made to the data.

Additionally for gravimeters mounted on ships or aircraft we
have to apply an another correction, called the Eötvös cor-
rection, which addresses the effect of the Coriolis force of the
rotating Earth and our velocity increasing, or decreasing
relative to it when we travel East or West.

Many	things	perturb	
gravity	readings	and	mask	
the	signature	of	a	targeted	

anomaly.



Gravity	surveys	can	be	done	on	the	ground,	from	drones,	from	airplanes	and	using	orbiting	satellites.		We	will	
not	address	airborne	or	satellite	surveying	methods	here,	other	than	to	point	out	a	few	key	considerations:

- The	amplitudes	of	gravity	anomalies	are	lower	when	they	are	measured	from	aircraft	or	from	space.	
Moreover,	the	farther	the	measurement	is	from	the	source,	the	more	spread	the	anomaly	is.		This	makes	
short-period	anomalies	from	small	targets	nearly	impossible	to	separate,	although	methods	such	as	“upward	
continuation”	can	be	used	to	try	to	model	how	such	anomalies	might	appear	at	altitude.

- Continuous	data	collection	in	gravity	surveys	in	the	air	or	at	sea	requires	accounting	for	the	Earth’s	rotational	
spin,	and	any	Eastward	or	Westward	velocity	of	the	vessel,	which	will	either	increase	or	decrease	the	
gravitational	influence	of	the	Coriolis	effect.		This	is	the	Eötvös correction.



Barometric	Pressure	Corrections

On days with a normal weather pattern, barometric
pressure variations are in the range of 0.3 – 1 kPa (i.e. 1 –
3 μGals) per day. There will be times, however, when a
major pressure front (e.g. a thunderstorm) moves rapidly
through the survey area. Such a weather system can give
rise to pressure changes totalling 5 kPa (i.e. 18 μGals) in
amplitude, with temporal gradients of the order of 0.5
kPa/hr (1.8 μGal/hr) and spatial gradients of the order of
0.2 kPa (0.7 μGal) in 10 km distances.

For most surveys, the effects of barometric pressure can
be neglected, but if microgravity measurements are being
conducted (for example, tracking underground fluid
migration such as groundwater or magma), it may be
necessary to remove the barometric pressure effects
from gravity readings.



Latitude (North or South)

Because the Earth is not a sphere, but instead is a flattened 
ellipsoid, gravitational pull increases as we move toward 
the poles from the equator – because we are closer to the center of the 
Earth..

A latitude-correction might become important if your survey covers 
large areas and crosses significant distances in a N-S orientation. 

The international standard of gravitational acceleration as a 
function of latitude φ [NOTE: φ is in rad, not degrees. Multiply with 
π/180 to use degrees]: 

g0(φ) = 9.78031846 [1+0.005278895 sin2φ–0.0000023462 sin4(φ)] m/s2

For a small, local survey, it is possible to simply apply a linear gravity 
gradient as a function of the distance north or south of the base station,

δgL= -8.108 sin 2φ.	(units	per	km	N)

This	correction is	subtracted from	readings as	you move away from	the Equator.



Drift

One problem that affects all gravity 
readings is instrumental “drift.”  This is a 
slow change in the apparent gravitational 
acceleration that comes from physical 
changes in the instrument itself, largely as 
a result of temperature* changes.  These 
instruments are very sensitive and a slight 
change in the temperature will cause 
changes (expansion or contraction) of 
components within the instrument, causing 
it to give us a different reading.   

We usually address instrumental drift by 
taking repeated measurements at one 
“base” station.  Except for the changes in 
gravity due to the tides (which we will 
discuss shortly), gravity at this location 
should not change.

* Modern gravimeters contain internal 
temperature controls to reduce this effect.

Removing	the	(assumed)	linear	drift	between	the	base	station	
readings	(black	boxes)	allows	us	to	correct	readings	at	other	
stations	(red	circles)	to	remove	instrumental	drift.	



Tidal deformation of Earth due to Sun and Moon

The shape of the Earth changes frequently due to
tidal deformation caused by the gravitational attrac-
tion of the Moon and Sun.

The sea-tides are a well-known phenomenon; there
are two high and two low tides every day.

The gravitational effect of Sun and Moon is not
always aligned, but if they act in the same plane, the
tides are much larger. We call those “spring tides.” If
Sun and Moon are at a right angle (90o) to one
another, and their effects partially cancel one
another, we get “neap tides.”

Tidal maxamia cause the gravimeter to be farther
from the center of the earth, which means the gravity
reading at “high tide” is lower. These effects, too,
have to be removed from the data.



The base station can move 
(depending on latitude) up to 30 
cm up and down with respect to 
the center of the earth, twice a 
day. Thus, the resulting gravity 
readings would look like a 
sinusoid. 

Of course we also have to deal 
with the instrumental drift. An 
example of  combined drift and 
tide is shown as the dotted line.



Shown	here	are	several	gravity	readings	I	made	with	a	gravimeter	at	
my	house.
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Comparison of calculated tidal change vs. measured gravity

The readings define a “sawtooth” pattern (with a slope).
These readings were made in exactly the same place,
over and over again over several days.

The slope (red line) is an estimate of the slope of this
sawtooth function, which provides a first order approx-
imation of the instrumental drift

Here I plot the data again, with the estimated tidal
gravity function as well, adjusted by the linear drift
function I determined above. The tidal function is easily
and accurately calculated, and can be predicted for any
point on earth at any time in the past or future.

It appears the gravimeter is stable and is measuring the
gravity inside my garage consistently.
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Other	Problems	from	Afar

Here	is	another	drift	test	(left)	taken	with	the	gravimeter	in	a	single	location	for	eight	days.		You	can	see	the	quasi-linear	
drift	as	well	as	the	sinusoidal	function	due	to	the	tides.		Each	reading	was	estimated	twice,	and	these	numbers	were	
recorded.	Note	at	4.5	days,	the	pairs	of	readings	become	inconsistent	for	awhile.		If	we	plot	(right)	the	variance	of	the	
readings	we	see	a	spike	at	about	4.5	days,	where	the	two	readings	vary	by	as	much	as	30	µgal – while	at	other	times	the	
variation	is	less	than	5	µgal.		What	could	cause	this?

Thermal	
instability



Puzzle	solved!

A quick visit to the USGS global earthquakes website
shows the problem: An earthquake of M 5.1 in Tonga
occurred earlier that morning. The waveform for the
nearest GSN broadband seismic station to the
gravimeter (ANMO) was found at IRIS. It shows that
the surface waves for this earthquake arrived at just
the right time to cause trouble for the gravity
readings.

A gravimeter works by balancing a mass on a spring,
and is a very sensitive long-period seismometer. It’s
easily disturbed by long-period surface waves from a
large, distant earthquake. This seismic record shows
that for a time period of about an hour, there would
be no point trying to get high-precision gravity
readings on that morning. A larger earthquake would
last longer.

TONGA



Free Air correction

The basis of this correction is the reduction in 
magnitude of gravity with height, irrespective of 
the kind of rocks beneath. The free-air correction 
is the difference between gravity measured at 
sea level  (or other datum) and at an elevation h. 

Commonly a value of 0.3086 mGal per meter is acceptable for most practical applications. The free-air 
correction term varies with latitude from 0.3083 mGal per meter at the equator to 0.3088 mGal per 
meter at the poles. With a normal measuring precision of 0.1 mGal or less for most modern gravimeters, 
the station elevation needs to be known within 3 –5 cm.

This means that when a ground based gravity survey is performed, the topography must be known very 
precisely.

Elevation	Effects



Bouguer correction

As with the free air correction, the Bouguer correction 
targets the change in height of the gravity reading 
position compared to some selected datum, but this 
correction is opposite in polatiry.  The Bouguer
correction accounts for the added mass beneath the 
gravimeter as a result of being on top of a hill instead 
of in a valley.

This correction therefore is subtracted from the gravity reading, whereas the Free Air correction is 
always added to the reading.

The Bouguer correction can vary depending on the density of the rocks that are being corrected for. It 
assumes an infinite slab of material of the chosen thickness and density, and reduces the theoretical 
downward pull of that slab.  

BC = -.00004191 rh in gravity units, or .0004191 rh in mGal, where r is the density of the slab.

Elevation	Effects



Finding the right density for Bouguer Correction

Illustration of the Nettleton’s
method for density estimate.

The Bouguer curve that corre-
lates least with the topography
(either positively or negatively)
is chosen as the correct density estimate.

Top: topography along a profile. Middle: Bouguer curves for dif-
ferent densities. The best density estimate is plotted in red. Bottom:
topography and Bouguer curve correlation for different densitites.



The	geoid	is	defined	as	the	surface	of	the	earth's	gravity	field,	
which	approximates	mean	sea	level.	It	is	perpendicular	to	the	
direction	of	gravity	pull.	Since	the	mass	of	the	Earth	is	not	
uniform	at	all	points,	the	magnitude	of	gravity	varies,	and	the	
shape	of	the	geoid	is	irregular.	



Terrain correction

The effect of topography (valleys, hills) can be quite substantial. The hill with excess mass has its center of mass 
above the level of the valley, where the gravimeter station is located. The resulting attractive force by the hill 
slightly reduces the measured gravity at the station. Similarly the effect of a valley on gravity measurements with 
a station on top of a hill can be visualized by defining the missing mass of the valley relative to the hill as –M. 
Thus, the measurement of gravity on top of the hill is again underestimated.

We therefore must correct each gravity station’s readings to account for the topography around the station.  This 
correction needs to be made to account for the topography out to several kilometers, although the amplitude of 
the correction decreases with distance.



Terrain correction 

is a complicated task. It requires knowledge of detailed
topography as well as a good understanding of the density
of the surrounding rocks (which may also be the target of
the survey).

Historically a Hammer Terrain correction has been used,
named after Sigmund Hammer (1939). This Hammer-
corrections template consists of a series of segmented
concentric rings, which are superimposed over a
topographic map. The average elevation of each segment
is estimated and each segment is given a constant
background density, identical to the density used in the
Bouguer correction. Today, GIS (Geographic Information-
system) can help digitize topography and calculate
average masses of the topography surrounding the
stations. Modern gravity interpretation software usually
comes with a tool for terrain correction, that can be linked
to standard GIS data formats, or can import a Digital
Elevation Map (DEM) to facilitate the corrections.

Hammer	template



”Life’s	a	drag,	and	then	you	die.	
But	first,	you	have	to	do	terrain	
corrections.”

--- anonymous	Geophysics	
Student,	University	of	Alaska	
summer	field	camp,	1986



Isostasy

Isostatic	anomaly	=	observed	Bouguer	anomaly	- expected	Bouguer	anomaly

Get	isostatic	anomalies	at	
foreland	basins,	oceanic	ridges	
and	post-glacial	basins

and	for	all	small	scale	features
(these	are	not	isostatically	
compensated)



Pratt isostatic compensation model

Pratt suggested that the density of the rocks forming the
mountains is less than those forming the lowlands, such
that the total mass of a column of mountain to a given
depth (called depth of compensation) is equal to the total
mass of a column in the lowland to the same depth .

In this model the Earth’s crust is approximated as blocks
of equal masses floating on the mantle. The elevation-
density relationship is given as:

ρAHA= ρBHB

Using the diagram to the right as an
example



Airy isostatic compensation model

Airy suggested that the density of the Earth’s crust does
not change strongly enough to give rise to observed
Bouguer anomalies, rather the thickness of the crust
(roots) changes remarkably. The low density crust is
floating in the high density mantle. The higher the
mountain, the bigger the crustal root beneath. The
elevation-thickness relationship is determined with respect
to the sea level:

HWρW+ HCρC+HMρM= HρC,

Where ρW, ρC, and ρM are densities of the water, crust and
mantle.

Airy’s model is preferred geologically and seismically, whereas
Pratt’s model is easier to use to calculate the isostatic
correction, but the results are similar. The aim of the isostatic
correction is that effects of the large-scale changes in density
should be removed, thereby isolating the Bouguer anomaly.



Removing the regional trend

To model local gravity anomalies, it may also be necessary to
remove the local gravity trend – assumed to derive from deeper
structures such as mantle density changes or Moho topography,
from our data. This can be done by fitting a trend surface –
either linear (a plane) or a long-wavelength polynomial surface.

This leaves the gravity anomaly due only to shallow, local
structures, which we can then attempt to interpret.

Strong	regional	dip,	deflected	by	oil-filled	anticline



Here	is	an	example	of	a	total	gravity	anomaly	observed	in	a	
linear	transect	(top),	along	with	the	contributions	of	three	
subsurface	features:

- Central	basaltic	dike
- Larger	granitic	pluton
- Regional	dipping	strata	into	which	these	have	been	

injected.

By	having	some	a	priori	understanding	of	the	geology	in	the	
area,	we	can	go	beyond	the	visual	approimation method	for	
removing	a	regional	trend	and	support	our	adjustments	to	
the	observed	gravity	using	geologic	information.	

Removing the regional trend



Gravity	Effects	of	Simple	Shapes



Modeling Anomalies using simple shapes

We often interpret gravity observations based on well-known
signatures for simple geometric shapes. For instance, based on
the calculated gravitational effect for a buried point source
(below), we can estimate the effect of a buried sphere of a
specific depth and specific radius, with a known density
contrast to the material in which it is embedded (right), for a
profile of gravity measurements that cross directly over the
sphere.
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where	b is	the	radius	of	the	sphere.	The	maximum	
depth	of	the	body	is	1.3	times	x1/2



The use of simple shapes to predict anomalies can provide initial insights into observed gravity; however, variations
in size, depth and density contrasts for these shapes can produce similar anomalies and can complicate the
interpretation of our observations.



A	Dipping	Dike
Here we have qualitative anomaly predictions for a
variety of depths and attitudes (tilts) of a buried
high-density dike. Details of the anomaly curvature
and symmetry / asymmetry can provide clues
regarding the angle of this feature and how near it
is to the surface.

A	buried	fault	with	
vertical	offset	can	be	
modeled	using	an	
infinite	half	slab



Predicting	Gravity	by	Building	Models



Both negative and positive
density contrasts can be modeled
for any gravity survey target. The
lower panel shows a cross-
section through the ground. The
circles represent denser (right)
and less dense (left) regions. The
upper panel shows the gravity
that might be measured at the
surface.



WARNING!

Gravity is a Potential Method,
meaning that we try to interpret
the sources that contribute to a
total potential force (this is also
true for magnetic surveying). As
such, we can always find a
variety of physical models that
can produce the same obser-
vations. This means that no
model based solely on gravity
observations can be considered
to be uniquely correct. Always,
additional information is needed
before confident interpretation
of the gravitational data is
possible.



Where:
gz vertical	component	of	gravitational	attraction
G universal	gravity	constant	=	6.67e-11m3Kg-1s-2
Dr (kg/m3)	density	contrast	of	prism	
µijk =	(-1)i(-1)j(-1)k
Dxi =	(xi-xp),	Dyj=(yj-yp),	Dzk=(zk-zp)		
Rijk (distances	from	each	corner	to	point	p)	=	

sqrt(Dxi2 +	Dyj2 +	Dzk2)
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Building	a	simple	density	model	of	prisms	to	estimate	theroretical
gravitational	attraction	for	various	anomalies

The	contribution	of	each	model	cell	at	point	P	may	be	
given	as:	



Building a Computer Model to Predict Gravity

Here we take the imaginary cube and position it at some depth beneath the surface of our model. For each
X,Y position of our sensor (grid of points at the top of the model) we calculate the gravitational pull of the
cube. P	
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For example using the following parameters:
X1 = -100m, x2= 100m, Y1= -100m, Y2= 100m, Z1= -100m,
Z2 = -200 m, dr = 2000 kg/m3

for one buried prism, we can predict an anomaly as shown 
here, for a dense rectangular network of readings taken 
over a grid of 150 m2.
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We	construct	our	model	of	prisms,	assigning	different	densities	to	different	prisms	(cells	/	voxels)	to	approximate		
any	subsurface	density	structure	we	like.		These	models	can	become	very	complex,	depending	on	the	local	geology	
and	the	resolution	of	our	survey.



Using	Models	to	Interpret	Reality



Witter	et	al.	(2016),	Geothermal	Energy	4:14

Comparing the Forward Model to the Observations

Here we show a very complex geologic model for the Bradys Geothermal Field in western Nevada, U.S.A. (on the left)
consisting of many prisms of different densities. The calculated gravity field (panel b on the right) can be compared to the
actual, measured gravity field (panel a on the right) to determine the misfit (panel c on the right). The 3D model can be ad-
justed to improve the fit between observed and calculated gravity values.



Varying the Rock Density

If the geologic structure is well-
known through seismic imaging or
borehole logging, then the geo-
metry of the rock units cannot
simply be adjusted to reduce the
gravity residuals observed from the
modeling. But the densities of the
different rock units may be ad-
justed, within reasonable bounds,
and important information about
the thermal, porosity, permeability
or saturation of the target area may
be obtained.



Summary:

• We	can	measure	changes	in	gravity	from	place	to	place	on	the	earth.
• These	measurements	require	careful	recording	of	location,	elevation	and	time	for	each	
reading.

• These	readings	must	be	adjusted	for	known	effects	(such	as	elevation,	latitude,	tides)	
that	can	bias	our	data	and	mask	the	signal	of	interest.

• After	making	corrections	to	our	data,	we	can	remove	regional	trends	to	obtain	local	
Bouguer anomalies.

• The	Bouguer anomalies	arise	from	variations	in	the	subsurface	density	structure.
• We	can	build	models	to	explain	our	observations,	but	these	models	must	be	consistent	
with	what	is	known	about	the	local	geology.

• Combining	gravity	models	with	other	information	– geologic,	seismic,	electromagnetic,	
will	improve	confidence	in	the	results.		

Gravity	is	a	potential	method,	meaning	that	its	results	are	ambiguous	in	isolation.	Other	
information	is	always	needed	to	interpret	gravity	anomalies	with	confidence.


